The early days of electricity in Hove (3)

As with previous posts in this series, this one is work in progress and subject to corrections and revisions.

As I mess with this, I realise I am working backwards.  The story starts with an Act of Parliament of 1890 whose objective was to provide electric lighting in Hove, this was to implemented by the Hove Commissioners (what we now call the council), who formed an “electric light committee”.  This first met on Saturday, 26-Apr-1890.

At the meeting on Thursday, 11-Dec-1890 a plan was beginning to form.  It was resolved that the best course of action would be to negotiate with a responsible company to erect buildings and plant and to lay mains in order to supply electricity as required.  It seems that they had considered three options, a) the council would take on the construction and operation of the facility which would be financed by a mortgage on the rates, b) the council would provide the plant and get a contractor to operate it and c) get a private company to finance, build and operate, this being the preferred option.  It was felt that this project was not appropriate for a town council.  The first step was to find a suitably qualified electrical engineer to prepare specifications and advise on terms and conditions of a contract with a company as proposed.

Mr. R.E. Crompton was selected for the task at a meeting on 2-Jan-1891.  This was a logical choice, Mr. Crompton had a proven ability with both arc and incandescent lighting and his company Crompton and Co. was a major manufacturer and contractor.

These deliberations were going on against a backdrop of international and local evolutions in the electricity supply industry.  This was the time of the “battle of the currants”.  On one side was low voltage DC generation and distribution, in very crude terms there was direct connection between the consumer’s appliances and the dynamos at the power station.  These systems worked well for small communities clustered around the power station.  It was opposed by promoters of high voltage AC systems.  In these the AC generated at the power station is stepped up to a high voltage for transmission and stepped down again for distribution to the consumer, the key component is the transformer.  Ultimately, the high voltage AC systems were to triumph.  At the local level the neighbouring Brighton and Hove Electric Light company was seeking to expand.  At this time Brighton had established an electricity supply four years earlier and had experience with both AC and DC systems.

Mr. Crompton drew up his report and this was considered and this was considered on several occasions and on 8-Jun-1891 a decision was made to adopt the low voltage DC option.  It is clear from the minutes that they had discussed the AC alternative, but Mr. Compton recommended the DC route because Hove was a compact borough and there would be no problems with transmission.  It was pointed out that several London boroughs had adopted this solution as had parts of New York and Berlin.  Mr. Compton’s report  effectively became basis of the specification which against which bids would be invited and a prospectus for potential shareholders.

The suggested site was bounded on the west by Holland Road with 135 feet of frontage on what is now Davigdor Road.  To the north was a railway goods yard which was home to several coal merchants.  The plan was to have a siding laid so that coal could be delivered by rail.

The plant in the power station was intended to be implemented in phases.  When complete, the main elements were to be:

  • 5 Lancashire boilers rated at 160 p.s.i
  • 3 250 HP Willans dynamo sets
  • 3 100 HP Willans dynamo sets
  • 1 120 cell lead acid accumulator capable of supplying 600 amps for a short period.

Dividing the generating capacity between 100 and 250 HP units suggests that demand was expected to vary during the day.

The plant may have been arranged like this:

The site may have been long and thin making it necessary to use the space efficiently.

The costs for the initial phase with two boilers, three dynamo sets and an accumulator were estimated to be:

  • Plant: £8,297
  • Buildings: £3,000
  • Mains: £12.844
  • Total: £24,141

The cost of the complete scheme was around £50,000.

The public street lighting commitment was for 14 ornamental lampstands along the sea front, each with a 10 amp arc lamp mounted 26 feet above the street which was rated at 2,000 candlepower, the total running costs for 2186 hours were estimated to be £280/year.  Even in 1890, Hove was a sizeable town, so this was not a serious attempt to displace gas lighting.  It seems that the principal objective was to sell electricity to commercial and domestic consumers.  The electricity for these lights was to be supplied at half price, or 4d/unit, the retail price being 8d/unit (more than £1 in today’s money).

The report reads like it has been written to promote a scheme, it suggests that after seven years, 400 houses would be supplied with electricity and profits could be £5,000/year.  It is not unknown for prospectuses to over estimate demand, however, in this case, it was an underestimate, after two years of operation, 200 households were connected.

The minutes of the Electric Light committee meeting on 3-Sep-1891 stated that the text of an invitation to bid for the project had been drafted and an agreement to purchase the Holland Road site had been produced together with an application to borrow £1,400.

On 27-Oct-1891, proposals were received from:

  • The Electric Power and Storage Company
  • The Brush Electrical Engineering Company
  • Crompton and Company
  • The Brighton and Hove Electrical Lighting Company

A few days later, a bid from the Planet Electrical Engineering Company was received, as this had been submitted on time, but delivered late, it was considered.

Only the bid from Crompton and Company was considered to meet the requirements of the commissioners and on 11-Feb-1892, a deed of transfer of the undertaking to Compton and Company was approved.

Advertisements

About SolarBucket

I trained as a mechanical engineer in the 1970's and then spent most of the following 25 years doing sums and software for Oil and Gas Exploration. Current interests are the study of wind and solar resources.
This entry was posted in Economics, Electricity, Energy, History, Sustainability and tagged . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s